Amirkashani, Davood, мо

Pediatric Endocrinologist

Now, The patient is a 5 years old boy.

He visited in clinic in 1 year old with abnormal movement (myoclonus and dystonia)

His mother complained about seizure like movements and treatment with phenobarbital and after 3 months adding clobazam.

Dystonia

Involuntary, slow, sustained contraction of agonist and sometimes antagonist muscles cause twisting and abnormal posturing. The condition can affect one part of your body (focal dystonia), two or more adjacent parts (segmental dystonia), or all parts of your body (general dystonia) He had been referred for working up for metabolic disorders Metabolic assessments had done for him

> acylcarnitine profile Plasma Amino acids profile Organic acids profile

Almost without any significant point

Treatable metabolic seizures

Disease Category	Intervention
Vitamin dependencies	
Pyridoxine dependency	Pyridoxine, ±folinic acid
Pyridoxal-5-phosphate dependency	Pyridoxal-5-phosphate, ±pyridoxine
Biotinidase deficiency	Biotin
Transportopathies	
GLUT-1 deficiency	Ketogenic diet
Cerebral folate deficiency	Folinic acid
Biotin thiamine responsive disorder	Thiamine, biotin
Amino or organic acidopathies	
Serine synthesis disorders	Serine and glycine
Mb-cofactor deficiency (type A)	cPMP (see text)
Cobalamin C deficiency	Cobalamin and betaine
Glutaric acidemia type I	Carnitine and protein restriction
Creatine synthesis disorders	Creatine, ornithine, and arginine restriction
Neurotransmitter disorders (BH4)	
Urea cycle disorders	Nitrogen scavengers, dialysis, and protein restriction
PTPS deficiency	BH4, monoamine precursors, and MAOIs
DHPR deficiency	Folinic acid and monoamine precursors
Glucose homeostasis disorders	
DEND	Sulfonylureas
HI-HA	Protein restriction and diazoxide
Mitochondrial disorders	
Pyruvate dehydrogenase deficiency	Ketogenic diet

Untreatable metabolic seizures

Nonketotic hyperglycinemia	Elevated CSF: plasma glycine ratio
Zellweger syndrome	Elevated VLCFA, phytanic and pristanic acids
Neonatal adrenoleukodystrophy	Elevated VLCFA, phytanic and pristanic acids
Molybdenum cofactor disease	Sulfite test in fresh urine, fibroblast studies, uric acid
Sulfite oxidase deficiency	Sulfite test in fresh urine, fibroblast studies
GABA transaminase deficiency	GABA in CSF
Adenylosuccinate lyase deficiency	Modified Bratton–Marshall test, purines in urine
Respiratory chain disorders and PDHc deficiency	Lactate elevation in CSF, plasma and urine, activity of respiratory chain enzymes and PDHc in muscle and fibroblasts
Glutamate transporter deficiency	Glutamate oxidation in fibroblasts, genetic studies (sequencing of <i>SLC25A22</i>)
Congenital glutamine deficiency	Extremely low levels of plasma, urine, and CSF glutamine
Neonatal form of neuronal ceroid lipofuscinosis	Cathepsin D activity
Asparagine synthetase deficiency ^a	No biomarker. ASNS gene
Hyperprolinemia due to SLC25A22 mutations	High plasma proline, low glutamate in the CSF, accumulation of lipids in fibroblasts

Prolactin checking

PRL=23ng/ml

male			female		
Age (years)		Reference range		Reference range	
1-3 4-6 7-9 10-12 13-15 16-20		2.3-13.2 0.8-16.9 1.9-11.6 0.9-12.9 1.6-16.6 2.1-17.7		$\begin{array}{c} 1.0\text{-}17.0\\ 1.6\text{-}13.1\\ 0.3\text{-}12.9\\ 1.9\text{-}9.6\\ 3.0\text{-}14.4\\ 2.8\text{-}29.2\end{array}$	

Schemaic diagram of neurotransmitter disorders

Neurotransmitter disorders

heterogeneous group of inherited neurometabolic disorders caused by the defects in the synthesis, degradation and transport of neurotransmitters including:

-Monoamines neurotransmitters (amines)

(catecholamines (dopamine& norepinephrine & epinephrine) and Indolamines (serotonin & histamin)

-Amino acides

(glycine& aspartate & glutamate & gamma-amino butyric acid)

-esters

acetylcholine

Diagnostic Tests

Diagnostic protocols and interpretation of results are as follows:

Urine or blood pterin analysis and blood DHPR enzyme activity assay All infants found to have HPA on newborn screening should have blood DHPR and urine or blood pterin analysis.

I	Interpretation of results of investigations in disorders of biopterin metabolism							
Deficiency	Blood PHE µmol/L	Blood or urine biopterin	Blood or urine neopterin	Blood or urine primapterin	CSF 5HIAA and HVA	blood DHPR activity		
РАН	>120	1	1	-	Ν	Ν		
GTPCH	90–1200	$\downarrow\downarrow$	$\downarrow\downarrow$	-	\downarrow	Ν		
PTPS	240-2500	$\downarrow\downarrow$	↑ ↑	-	\downarrow	Ν		
DHPR	180-2500	$\downarrow\downarrow$	N or ↑	-	\downarrow	\downarrow		
PCD	180-1200	\downarrow	1	↑ ↑		Ν		

Unlike other disorders of tetrahydrobiopterin deficiency, sepiapterin reductase deficiency is not associated with elevated phenylalanine levels and, consequently, will not be detected upon newborn screening.

dominant form of GTPCH deficiency and sepiapterin reductase (SR) deficiency

also lead to CNS amine deficiency But

are associated with normal blood PHE