

Pathophysiology and Genetics of Tyrosinemia Disorders

Dr. Zahra Beyzaei, PhD Shiraz Transplant Research Center (STRC) Shiraz University of Medical Sciences

Tyrosinemia Disorders

Hereditary Tyrosinemia Type I (HT1) (OMIM276700) is a severe inherited metabolic disease affecting mainly hepatic and renal functions that leads to a fatal outcome if untreated.

➢ In 1977, fumarylacetoacetate hydrolase (FAH) was identified as the deficient enzyme responsible for HT-1.

Tyrosinemia Disorders

Tyrosinemia type II is caused by a defect in tyrosine aminotransferase (TAT) (EC 2.6.1.5).

Tyrosinemia type III, the rarest of the tyrosine disorders, is caused by a deficiency of *p*-hydroxyphenylpyruvic acid dioxygenase (EC.1.13.11.27)

Pathway of Tyrosine Metabolism In Fah mutant mice the mRNA for tyrosine amino transferase (Tat), the rate-limiting enzyme in tyrosine degradation, is absent.

- The activity of 4-hydroxyphenylpyruvic dioxygenase (HPD), the second step in the tyrosine degradation pathway, is decreased in human HT-1 liver samples.
- ➤ These observations suggest that the clinical effects associated with HT-1 are due to other metabolites resulting from FAH deficiency, not the elevation of tyrosine in the blood.

Tyrosinemia Type I

In FAH deficiency, fumarylacetoacetate (FAA), the immediate precursor which appears to accumulate in hepatocytes, causing cellular damage and apoptosis. Tyrosine metabolism pathway

Genetics of Tyrosinemia Type I Tyrosinemia type I is inherited in an autosomal recessive manner.

The human fah gene is located on chromosome 15q23-q25, spans 30–35 kb and consists of 14 exons. The cDNA has an open reading frame of 1,257 bp encoding 419 amino acids

Genetics of Tyrosinemia Type I

The first mutation reported in the fah gene was the c.47A>T (p.Asn16lle) in a French Canadian patient and was shown to be causative of FAH deficiency.

FAH gene mutations in geographic regions

Mutations	Geographic location	Frequency in population
c.1062+5G > A (IVS12+5G> A)*	French Canada	86%
	Northern Europe	46%
p.W262X	Finland	80%
c.554-1G > T (IVS6-1G>T)*	Southern Europe	64%
p.G337S	Norway	58%
p.Q64H	Pakistan	92%
p.D233V	Turkey	94%

Mutation distribution of FAH gene

Prevalence

In geographic areas without newborn screening, tyrosinemia type I affects approximately 1 in 100,000 to 120,000 births.

A RECTABOLIC DISORDERS

Two regions of the world have a higher than expected frequency of tyrosinemia type I due to the increased frequency of certain pathogenic variants resulting from a founder effect:

- 1. In the Scandinavian countries the birth prevalence is estimated at 1:74,000 and 1:60,000 live births, respectively.
- 2. A founder effect from colonization by French settlers is present in the province of Quebec, Canada. The birth prevalence in the province of Quebec is 1:16,000

Prevalence

Prevalence

Tyrosinemia, type II (TYR II) affects fewer than one in 250,000 individuals. The condition may be more common in Arab and Mediterranean regions.

Tyrosinemia, type III (TYR III) is a very rare condition.
Prevalence: <1 / 1 000 000</p>

