

Hematopoietic Stem Cell Transplantation

Hadi Mottaghi Pisheh M.D

Pediatric Hematologist Oncologist Fellowship of Pediatric Hematopoietic Stem Cell Transplantation January 2021

Questions to be answered

- \succ <u>What</u> is a stem cell transplant?
- ➢ Where do stem cells come from?
- \succ <u>When</u> does a patient need a transplant?
- \succ <u>Who</u> can be a donor?
- \succ <u>How</u> does all this happen?
- > what problems can kids have after transplant?

What are Stem Cells?

- Not characteristics of specific tissues
- Divide for the lifetime of the organism
- Can replenish themselves

Stem Cell

Cells of the Immune System

Sources of Stem Cells

Peripheral Blood

Bone Marrow

Cord blood

Collection of HSCs

Bone marrow

Collection of HSCs

Peripheral blood

- Using cytokine stimulation (G-CSF injections)
- BM releases large number CD34 stem cells into circulation
- Stem cells harvested via peripheral line using apheresis
- □ (cell separator machine)

Collection of HSCs

Cord Blood

Collection of HSCs Bone Marrow vs Peripheral Blood

Bone Marrow	Peripheral Blood	Cord Blood
1-2 nights in hospital	Outpatient procedure takes 4-5 hours	-
Advantages:		
- No G-CSF injections	 Less invasive No general anesthetic more rapid hematopoietic recovery 	- Collection has no risks - Tolerance of greater degree of HLA mismatch - More quickly available
Disadvantages:		
 Requires general anesthetic Side effects: Side effects of anesthesia Pain, infections or bleeding at harvest site 	 G-CSF injections required Side effects Headaches, bone or joint pains Citrate toxicity Electrolyte imbalances 	 Low cell dosages may limit to small recipients Longer time to engraftment-> increased costs No additional cells if first transplant does not take
		 No medical history of donor Small volume makes transplant into adults difficult

Type of HSCT

Allogeneic transplant:

□uses stem cells from another person

□ Autologous transplant:

□uses stem cells taken from the patient

Rationale for HSCT

> Autologous HSCT:

> Allows delivery of supra-lethal doses of chemotherapy (transplant given as rescue)

> Allogenic HSCT:

- Donor cells may directly attack cancer cells (anti-cancer effect)
- Correct congenital defects in bone marrow (replaces defective marrow)
- Corrects congenital immunodeficiencies (replaces immune system)

HSCT indications

- Malignancies
 - Leukemia, Lymphoma, solid tumors, ...
- ImmunodeficienciesSCID, CGD, SCN, ...
- Metabolic disorders
 - MPS, osteopetrosis,...
- Hematologic disorders
 - Thalassemia, ...

Cells of the Immune System

Rationale for HSCT

Choice of graft is based on

□ disease type

□ patient condition

donor compatibility and health

Limitations of Allogeneic HSCT

Scarcity of suitable donors

Graft versus Host Disease

HSCT-definition

Diagnosis & initial treatment of illness

Diagnosis & initial treatment of illness

Decision to perform stem cell transplant

Diagnosis & initial treatment of illness

Decision to perform stem cell transplant

Identification of donor

Identification of Donor HLA Typing

□ HLA are proteins found on short arm of chromosome 6

□ Antigens important in HSCT

□ HLA-A

□ HLA-B

□ HLA-C

□ HLA-DRB1

□ HLA-DQB1

one set of 3 from each parent

□ Brings to a total of 10 antigens to match

 \Box A full match is "10/10"

□ ABO incompatibility is not an exclusion

	A1 B8 DR3	b A2 B4 DR	4	C A3 B7 DR2	d A25 B18 DR7	
A	1,2;88,44	;D R3 ,4		A3,25;B	7,18;DR	2,7
	FATH	ER		MO	THER	
SIBLINGS	3:					
A1 B8 DR3	A3 B7 DR2	A1 B8 DR3	a d	A25 B18 DR7	b A2 B44 DR4	C A3 B7 DR2
b d A2 B44 DR4	A25 B18 DR7	A1 B8 DR3		A3 87 DR2		

Type of Donor

- Allogeneic transplant:
 - from sibling/related donor
 - from unrelated donor: found using a donor registry
 - Haploidentical: half-matched family member

- Autologous transplant:
 - Affected Patient (Self)

Diagnosis & initial treatment of illness

Decision to perform stem cell transplant

Identification of donor

Pre-Transplant Evaluation

Pre-Transplant Evaluation

Rationale	Investigation
To assess disease status	PET / CT scans; Bone marrow aspirate. etc
To assess cardiac function	Echocardiogram
To assess pulmonary function	Lung function tests
To assess suitability for HSCT	Blood tests: FBS, ABO, Urine analysis, clotting screen, syphilis, Viral screen – CMV, TOXO, EBV,HSV, VZV, HIV, Hep B&C, HTLV 1& 2 etc

Diagnosis & initial treatment of illness

Decision to perform stem cell transplant

Identification of donor

Pre-Transplant Evaluation

Conditioning of recipient/ Prevention of GvHD

Conditioning Regimens

The first stage of the transplant

□ May be given in one dose or over several days.

 \Box 2 arms:

□ Myeloablative & Immunosuppressive

□ Necessary for:

□ Suppressing the patient's immune system

Destroying remaining cancer cells

Creating room in the bone marrow for the transplanted stem cells

Conditioning Regimens

Conditioning regimen is dependent on

□ the type of disease

□ the type of transplant

□ co-morbidities and age

□ given 3-10 days before transplant

Conditioning Regimen Intensity

Treatment Protocol DBA

Prevention of GvHD

- > Donor selection: HLA matching
- Reduced intensity conditioning regimens
- \succ T cell depletion
- > Use of immunosuppressive drugs
 - Cyclosporin
 - Methotrexate
 - Mycophenolate mofetil
 - Tacrolimus

Diagnosis & initial treatment of illness

Decision to perform stem cell transplant

Identification of donor

Pre-Transplant Evaluation

Infusion of stem cells into patient Conditioning of recipient/Prev ention of GvHD

30

Stem Cell infusion

- At least 24 hour after the conditioning
- will be given on Day 0.
- These are generally given through a central line and takes approximately 30 minutes.
- Infused like a blood product
- We do NOT do the surgery!

Stem Cell infusion

Stem cells are either cryopreserved or fresh.

> Cryopreserved

- usually for autologous transplants

> Fresh

– Usually for allogeneic transplants

Complications of Stem Cell infusions

Immunologic complications

- <u>Immediate</u>
 - Acute Hemolytic Reaction
 - Anaphylactic reactions
 - Transfusion-related acute lung injury
- <u>Delayed</u>
 - Delayed hemolytic reactions

Non-immunologic complications

- DMSO Toxicity
- Septic infusion reaction
- Fat emboli
- Bleeding due to excessive anticoagulation
- Circulatory overload
- Hypothermia

Diagnosis & initial treatment of illness

Decision to perform stem cell transplant

Identification of donor

Pre-Transplant Evaluation

Support of patient until engraftment occurs

Infusion of stem cells into patient Conditioning of recipient/Prev ention of GvHD

34

Engraftment

- > Engraftment is defined when:
 - $\Box \text{ the ANC} \ge 500 \text{ cells/mm3}$
 - \Box platelets $\geq 20 \times 109$
- > Time of engraftment:

Peripheral blood stem cells; day +10-14
Bone marrow; day +14-21

Umbilical cord blood; day +17-28

> Chimerism

Chimerism

The presence of donor hematopoietic cell lines in the recipient of an allogeneic transplant

□ FISH or STR Methods

Check chimerism in 15, 30, 60, 90, 180, 360 days after HSCT, annually till 5 years

Rational for HSCT

□ Non-engraftment

Booster

□ Mixed chimerism

Supportive Care

In solid organ transplantation, the main relevant immunologic process is graft rejection

□ In marrow transplantation, a novel immunologic condition arises due to the immunologic competence of the graft itself.

□ Rejection is bi-directional

Graft rejection

Graft-vs.-host disease (GVHD)

□ Tolerance develops, immunosuppression not lifelong

HSCT Process: Kill the Disease, Injure the Patient

Patient supported with

- ✓ Antibiotics,
- ✓ Blood transfusions,
- ✓ Treatment for other side-effects
- ✓ Total parenteral nutrition
- ✓ Antiemetics

Early

- > Mucositis
- > Infections
- Pancytopenia
- Organ dysfunction
- Graft rejection
- > Acute GvHD

Delayed

- Chronic GvHD
- Secondary tumors
- Late infections
- > Need to repeat vaccinations
- > Endocrine

> Mucositis

Early

- > Transplant related infections
 - Damage to mouth, gut and skin
 - Prolonged neutropenia

- Sinusoidal obstructive syndrome (VOD)
- Ife threatening complication within the first 35- 40 days following myeloablative preparation regimen.
- present with a painful hepatomegaly, weight gain due to fluid retention and elevated serum bilirubin levels.

<u>Early</u>

> Pancytopenia

□ PRBC and platelet transfusions

□ Broad spectrum antimicrobials

□ Antifungals if prolonged fevers 3-5 days

Graft Rejection

- Host versus graft
- Drug injury to marrow
- Viral infections: CMV, HHV-6 & 8

<u>Early</u>

Interstitial Pneumonitis

Diffuse alveolar hemorrhage

□ ARDS often caused by CMV

Early

- Graft Versus Host Disease
 - Donor T cell response against recipient tissue cells
 - Up to Day +100
 - Target organ:
 - Skin,
 - GI
 - obstructive Liver dysfunction

Skin GvHD

Delayed

- Chronic GVHD
 - After Day +100
 - manifestations of Skin especially, as well as Gut, Liver and Lung
 - 30-40% develop

Delayed

Secondary Tumors

Acute leukemias, solid tumors, MDS
Months to years after transplant

□ increased incidence with TBI

Delayed

Late Infections

□ Bacterial, viral fungal

□ Months after transplant

□ Associated with GVHD

> Need repeat vaccinations

Deneumovax, Hep B, Hemophilus influenza b, poliovirus, diphtheria/tetanus, flu

Delayed

- > Short stature
- > Hypothyroidism
- ➢ Gonadal failure
- > Sterility
- > Cataracts
- > Learning disabilities
- Secondary malignancies

Cost of BMT

□ Variable due to several factors:

Indication: AML<CML<NHL<AA

Complications: hospital days, blood products most \$\$

□Stem cell source: PBSC<Marrow (faster engraftment)

□ Preparative regimen: TBI expensive

Unrelated>>Allogeneic>Autologous

