# Acute Kidney Injury in children

## D. Derakhshan M.D. Pediatric nephrologist SUMS



# **Definition and classification**

# Pathogenesis

## **Case presentations**

**General Management** 







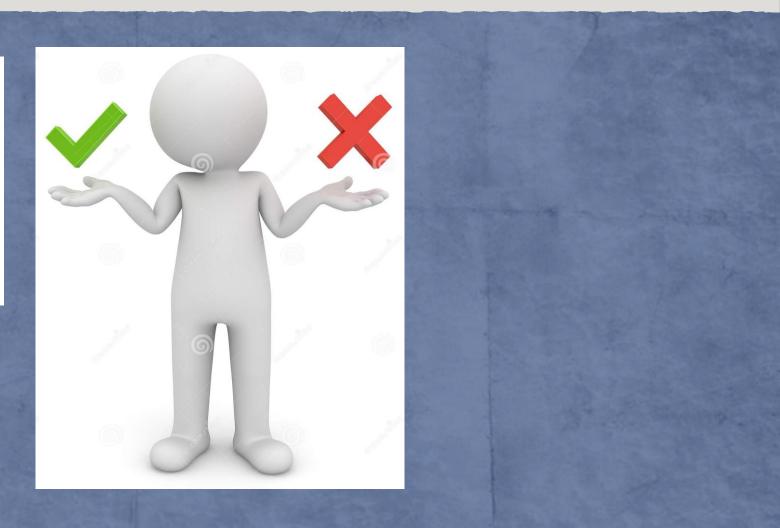

Abrupt loss of kidney function leading to a rapid decline in the GFR

Image: Image:

# **AKI or ARF?**

### **AKI:**

Renal dysfunction that ranges from a small increase in serum creatinine to complete anuric renal failure



# **KDIGO classification:**

| Stage | Serum Cr                                                                                                                            | Urine output                                           |  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|
| 1     | 1.5-1.9 times baseline, OR ≥0.3 mg/dL increase                                                                                      | <0.5 mL/kg/hr for 6-12 hr                              |  |
| 2     | 2.0-2.9 times baseline                                                                                                              | <0.5 mL/kg/hr for ≥ 12 hr                              |  |
| 3     | 3.0 times baseline, OR SCr ≥ 4.0 mg/dL, OR Initiation of renal<br>replacement therapy, OR eGFR < 35 mL/min per 1.73 m2<br>(< 18 yr) | <0.3 mL/kg/hr for ≥ 24 hr,<br>OR<br>Anuria for ≥ 12 hr |  |

### Normal ranges of serum creatinine values by age :

 $\geq$  Newborn – 0.3 to 1 mg/dL (27 to 88 micromol/L)

Infant – 0.2 to 0.4 mg/dL (18 to 35 micromol/L)

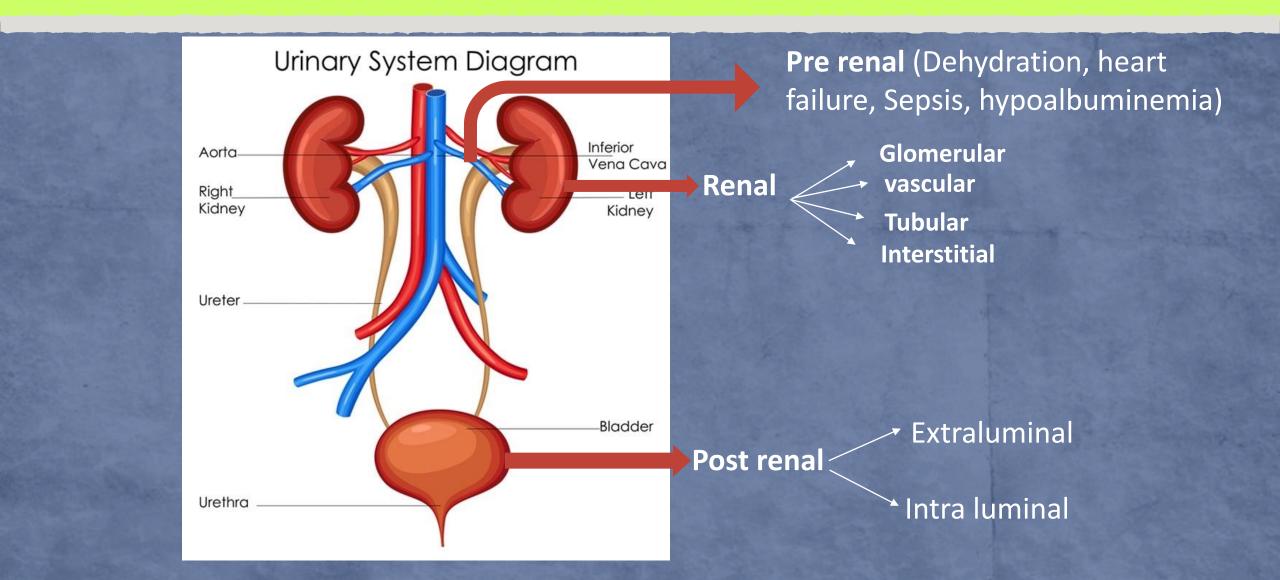
Child – 0.3 to 0.7 mg/dL (27 to 62 micromol/L)

> Adolescent – 0.5 to 1 mg/dL (44 to 88 micromol/L)

# **Limitations of serum Creatinine**

- Creatinine is not a sensitive biomarker for tubular injury.
- Significant elevations are not apparent until 24-48 hours after the insult.
- Creatinine values is dependent to age, sex, muscle mass, nutrition.
- Creatinine can double or triple and remain within the laboratory normal range.

Despite these limitations, a relative change in serum creatinine remains the principal method of diagnosing AKI.


### **Newer biomarker**

- Cystatin C
- Neutrophil gelatinase–associated lipocalin (NGAL)
- Interleukin 18
- Kidney injury molecule-1
- fibroblast growth factor 23 (FGF23)
- Insulin growth factor binding protein 7 (IGFBP-7)
- Tissue inhibitor of metalloproteinases 2 (TIMP-2)

# **Risk factors of AKI in children:**

- Critically ill patients in PICU
- Nephrotoxin Use:
  - Antibiotics: aminoglycosides, vancomycin
  - Antiviral agents
  - Radiocontrast agents
  - Angiotensin-converting enzyme inhibitors
  - Calcineurin inhibitors
  - Non-steroidal anti-inflammatory drugs (NSAIDs)

# **Pathogenesis:**



# **Diagnosis:**

History

- Physical examination
- Para clinics:
  - Urine analysis
  - Fractional excretion of sodium
  - •Kidney sonography (kidney size, renal parenchymal survey, obstruction, vessels)
  - •Kidney biopsy ( in most cases of acute GN and unknown causes of AKI)

|                                               | able 550.4 Urinalysis, Urine Chemistries, and Osmolality in Acute Kidney Injury |                                   |                                                |                                          |                               |  |  |
|-----------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------|------------------------------------------|-------------------------------|--|--|
|                                               | HYPOVOLEMIA                                                                     | ACUTE TUBULAR<br>NECROSIS         | ACUTE INTERSTITIAL<br>NEPHRITIS                | GLOMERULONEPHRITIS                       | OBSTRUCTION                   |  |  |
| Sediment                                      | Bland, may have<br>hyaline casts                                                | Broad, brownish<br>granular casts | White blood cells, eosinophils, cellular casts | Red blood cells, red blood<br>cell casts | Bland or bloody               |  |  |
| Protein                                       | None or low                                                                     | None or low                       | Minimal but may be increased<br>with NSAIDs    | Increased, > 100 mg/dL                   | Low                           |  |  |
| Urine sodium<br>(mEq/L)*                      | <20                                                                             | >40                               | >30                                            | <20                                      | <20 (acute)<br>>40 (few days) |  |  |
| Urine osmolality<br>(mOsm/kg)                 | >400                                                                            | <350                              | <350                                           | >400                                     | <350                          |  |  |
| Fractional excretion of sodium % <sup>†</sup> | <1                                                                              | >2 <sup>‡</sup>                   | Varies                                         | <1                                       | <1 (acute)<br>>1 (few days)   |  |  |



2 years old boy with history of gastroenteritis and bloody diarrhea since 2 days before admission. Patient has decreased urine output. In Physical examination patient has severe dehydration and lab data shows : BUN: 45 mg/dl , Cr:1.8 mg/dl



How can you differentiate a prerenal vs renal cause (HUS)?

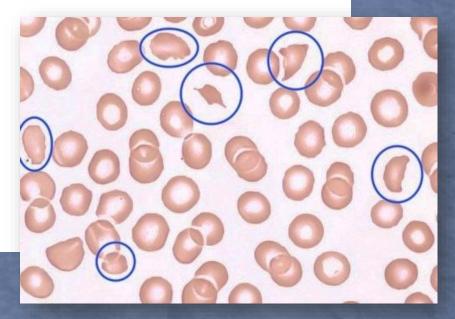
The urinalysis is normal prerenal AKI (bland U/a)

So normal urinalysis does not R/o AKI



### Case 2:

- An 8 years old boy has been admitted due to headache, flank pain and tea color urine since 3 days ago. He has history of sore throat 2 weeks before.
- In PE the pt had mild periorbital edema, BP: 140/80
- Iab data :
- WBC:7500, Hb:10.4, Plt: 290,000
- BUN:35 mg/dl, Cr:2 mg/dl, Na:136 mEq/L, K:6.1 mEq/L
- U/a : 3+ blood, 1+ Pro, RBC: many


What is your diagnosis and management?

Dx: PSGN Treatment plan:

- ✓ Salt and fluid restriction
- Controlling hypertension: Loop diuretic
- ✓ Correction of hyperkalemia

### Case 3:

- 1.5 years old boy with edema and irritability following an episode of gastroenteritis. The patient has become anuric since last night.
- P/E: Periorbital edema, BP: 130/85
- Lab data : Bun : 60 mg/dl, Cr:4 mg/dl , Na: 135mEq/L, K: 7.3 mEq/L
- Hb: 6.5, Plt : 60,000
- U/a: 2+ blood, 2+ pro, RBC: 20-25
- What is your probable diagnosis?



### Case 4:

- A 8 years old girl with nausea, vomiting and abdominal pain. Recently she had a dentist visit and has been taking Ibuprofen to control tooth pain.
- P/E: Nothing significant except flank tenderness
- Labdata:BUN:45mg/dl, Cr:2.5 mg/dl;
- U/a: SG:1007, 1+ pro, WBC:10-12, leukocyte esterase :1+

Proteinuria is minimal in most cases of Acute TIN but may be increased with the use of NSAIDs



- 13 years old boy has been admitted due to fever, flu like symptoms and generalized body pain.
- P/E: tachypnea, tachycardia , normal blood pressure
- O2 sat: 87% at room air
- Lab data: BUN: 60 mg/dl, Cr: 2.3 mg/dl, Na:139 mg/dl, K: 5.6 mg/dl
- CXR: bilateral infiltration
- Nasopharyngeal swab for SARS COV2: +ve



#### Both COVID 19 infection and MIS-C are risk factors for acute kidney injury

### Case 6:

- A 7 years old girl who has been diagnosed as T cell ALL has developed oliguria following chemotherapy.
- Lab data: BUN: 40 mg/dl, Cr: 2.6mg/dl , K: 6.8 mmg/dl, Ca: 6.5 mg/dl, Phos: 9.1 mg/dl, uric acid: 8.5 mg/dl
- What is your diagnosis?

# **Tumor lysis syndrome**

### Case 7:

- A 6 years old girl was admitted in pediatric surgery ward due to abdominal pain and irritability. She was consulted due to increased BUN& Cr.
- In P/E the patient had tachypnea, tachycardia, hepatomegaly and cold extremities.
- Lab data: AST:1300, ALT: 20, BUN: 35 mg/dl ;Cr: 1.9 mg/dl; Na: 132 mEq/L; K: 5 mEq/L.
- u/a: Normal , SG: 1018
- Echocardiography: Ejection fraction 10% , dilated chambers

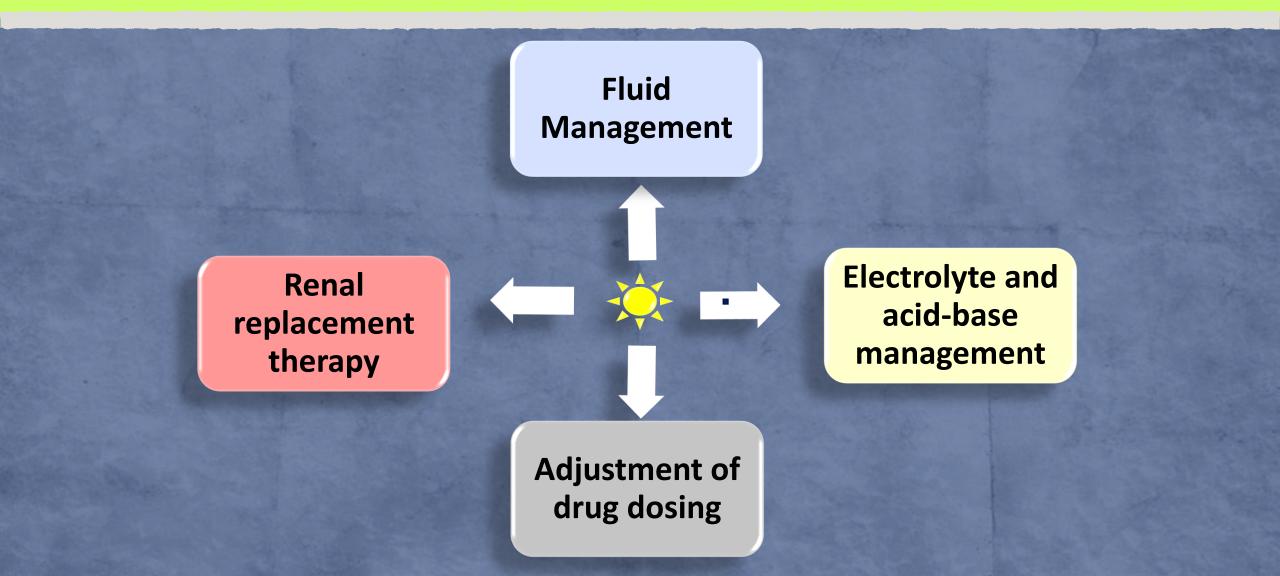


# **Prevention of AKI:**

#### **Proven measures:**

- Fluid administration in settings, such as hypovolemia
- Avoidance of hypotension (inotropic support in critically-ill children following adequate volume repletion)
- Readjustment and substitution of nephrotoxic medications (close monitoring of kidney function and drug levels)

YES


#### **Unproven measure:**

Mannitol?

- Loop Diuretics ?
- Low-dose Dopamine?
- Fenoldopam?
- Atrial Natriuretic Peptide?
- N-acetylcysteine?



### **General Management:**



#### Fluid Management

#### Hypovolemia:

- Adequate hydration with 10-20 cc/kg bolus of isotonic saline
- Consider vasopressin in hypotensive pts.
- Diuretic therapy only after adequate hydration; single high dose bolus (2-5 mg/kg Lasix, max 200 mg)
- If diuretic bolus was effective, →Lasix infusion (0.1-0.3 mg/kg/hr)
- Low dose Dopamine?

#### **Euvolemia**

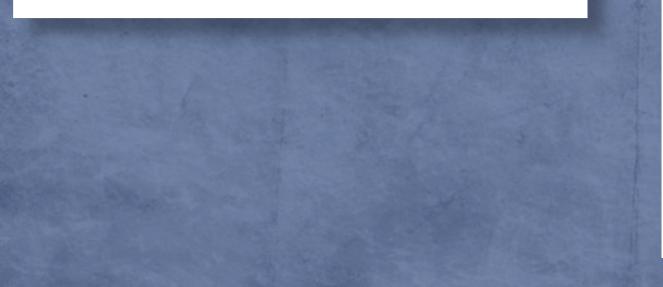
- 10-20 cc/kg of isotonic saline
- Diuretic only after adequate hydration (2-5 mg/kg Lasix)
- Lasix infusion
- Low dose dopamine?
- IV: IWL+ replace output

#### **Volume overload**

 Fluid restriction and fluid removal

#### Electrolyte and acid-base management

# Hyperkalemia:


#### K:6-7 mEq /L

- None emergent management:
  - ECG: peaked T wave, widening of the QRS intervals, ST segment depression, ventricular arrhythmias, and cardiac arrest
  - DC dietary sources and K+ in IV fluid
  - DC medications causing hyperkalemia
  - Start Sodium polystyrene sulfonate resin (Kayexalate), 1 g/kg (orally/ retention enema)
    - Each 1 gr/kg decrease 1mEq of serum potassium
    - Can be repeated every 2 hours

#### Electrolyte and acid-base management

# Hyperkalemia:

- Symptomatic hyperkalemia (muscle weakness)
- ECG changes (other than tall T wave)
- K>7 mEq/L
- K :6-7 mEq/L but at risk of hyperkalemia (TLS)



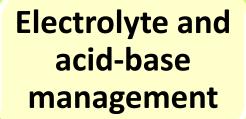
Non emergent management

+

#### Emergency management:

- Calcium gluconate 10% solution, 100 mg/kg/dose (maximum 3000 mg/ dose)
- Sodium bicarbonate, 1-2 mEq/kg intravenously, over 5-10 min
- Regular insulin, 0.1 units/kg, with glucose
  50% solution, 1 mL/kg, over 1 hr
- Beta adrenergic agonists

Electrolyte and acid-base management


# **Metabolic acidosis:**

#### Indication of bicarbonate therapy :

#### PH < 7.15; Bicarbonate < 8 mEq/L</p>

### Goal :arterial PH :7.20 ; Bicarbonate to 12 mEq/L

- The remainder of the correction may be accomplished by oral administration of sodium bicarbonate
- Rapid correction of acidosis with IV bicarbonate  $\rightarrow \downarrow \downarrow$  Ionized Ca $\rightarrow$  tetany



# Hyponatremia:

■ Most commonly dilutional → Corrected by fluid restriction rather than sodium chloride administration.

 Administration of hypertonic (3%) saline in symptomatic patients (seizures, lethargy) or those with a serum sodium level < 120 mEq/L.</li>



# Anemia

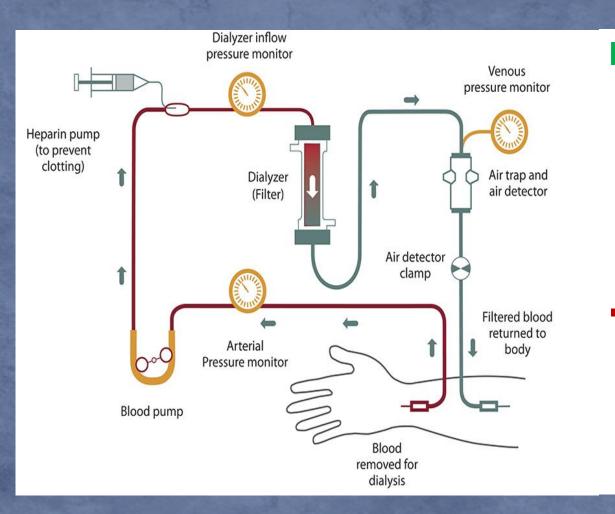
- Causes:
  - Hemodilution
  - HUS
  - SLE
  - Active bleeding

#### **Considerations for PC transfusion:**

- ✓ Hb<7 mg/dl</p>
- Slow 4-6 hr transfusion to prevent further volume expansion, hypertension, heart failure, and pulmonary edema.
- ✓ Fresh RBC minimizes the acute risk of hyperkalemia
- ✓ Washed RBC minimizes the chronic risk of sensitization for future renal replacement therapy.
- ✓ In severe hypervolemia or hyperkalemia → under dialysis or UF

### **Indications of renal replacement therapy RRT:**

- Anuria/oliguria
- Volume overload with evidence of hypertension and/or pulmonary edema refractory to diuretic therapy
- Persistent hyperkalemia
- Severe metabolic acidosis unresponsive to medical management
- Uremia (encephalopathy, pericarditis, neuropathy)
- Dialysis support may be necessary for days or for up to 12 wk.


### **RRT modalities**

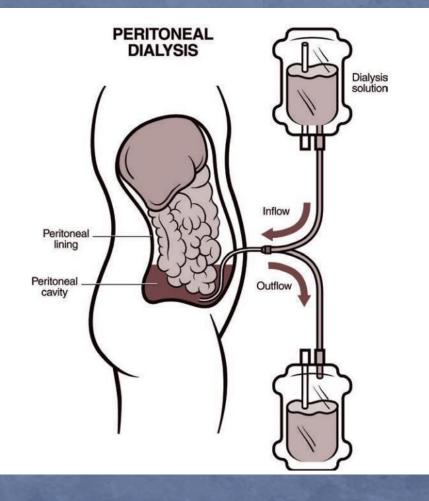
### • RRT choice depends on :

- Clinical status and age of the patient
- The expertise of the clinician
- The availability of appropriate resources



# Hemodialysis




#### **Pros:**

Ability to rapidly correct imbalances in fluid, electrolyte, and acid-base status.

#### Cons:

- Requires central vascular access
- Specialized equipment and technical personnel
- Anticoagulation
- The ability to tolerate a large extracorporeal volume.

# **Peritoneal dialysis**




#### **Pros:**

- ✓ Ease of performance
- ✓ No requirement for specialized equipment , personnel, or systemic anticoagulation.
- $\checkmark$  Therapy of choice in neonates and small infants.

#### Cons:

Slower than HD in correction of fluid overload

# CRRT



#### **Pros:**


- Useful in unstable hemodynamic status, concomitant sepsis, or multiorgan failure
- Fluid, electrolytes, and small- and medium-size solutes are continuously removed from the blood (24 hr/day)

Cons:

- Requires central vascular access
- Specialized equipment and technical personnel

Anticoagulation

The Pediatric nephrologists most often becomes involved in patients with AKI well after the injury has occurred.



More close monitoring of at -risk patients increases the likelihood of earlier diagnosis and preventing or at least reducing the severity of AKI.

Take home

message